

RB 1700 - 3/4"

Commercial & Industrial Regulator

The RB 1700 regulator is designed for commercial applications, appliance pressure regulation, secondary regulation of plant distribution piping, and all installations with continuous consumption and rapid flow rate variations, such as burners, industrial ovens, boilers, etc.

DESCRIPTION

The RB 1700 model is a direct-acting, spring-loaded regulator with an optional built-in safety shut-off device. Its balanced valve design ensures constant outlet

3/4"

pressure when the upstream pressure varies.

An optional built-in shut-off valve offers

protection against over-pressure and over-and under-pressure. Its bypass system eases the shut-off valve relatching.

Technical Features

Inlet pressure	19 bar				
Outlet pressure	0.1 bar - 4.8 bar				
Accuracy & lock-up pressure	Up to AC 10 / up to SG 20				
Operating temperature	-20°C to +60°C				
Ambient temperature	-30°C to +60°C (body material)				
Acceptable gases	Natural gas, town gas, propane, butane, air, nitrogen or any non- corrosive gas				
Safety devices	Optional built-in safety shut-off valve: over-pressure shut-off (OPSO) and under-pressure shut-off (UPSO)				

Sizes & Connections Body sizes

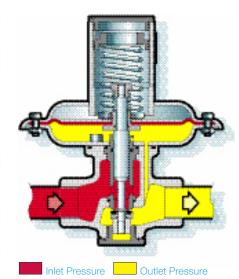
Connections Parallel internal thread according to ISO 7-1, ISO 228-1 or NPT						
Materials						
Body	Spheroidal graphite cast iron EN 1563 grade EN-GJS-400-15					
Head	Pressed steel UNI EN 10025					
Internal parts	Stainless steel and brass					
Seals	Nitrile rubber					
Diaphragm	Synthetic rubber with fabric reinforcement					

KEY BENEFITS

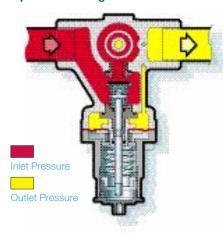
- » High flow accuracy
- » Easy maintenance
- » Rugged construction for durability
- » Balanced valve design eliminates inlet pressure effect
- » EN 334 compliant

Operational Diagram

Accuracy class (AC), lock-up pressure class (SG) and lock-up pressure zone:


» RB 172x 0.1 - 0.4 bar AC 20 / SG 30

» RB 172x 0.4 - 1.3 bar AC 10 / SG 20


» RB 173x 0.5 - 2.5 bar AC 10 / SG 20

The typical lock-up pressure zone is:

 $\frac{\text{Qmin, Pu}}{\text{Qmax, Pu}} = \frac{2.5}{100}$

Operational Diagram

Standard conditions:

- Absolute pressure of 1.013 bar
- Temperature of 15°C

Spring characteristics:

d: wire diameter Lo: height De: external diameter Lt: no. of spires

Correction factor for non-natural gas applications:

The flow rates are indicated for a 0.6 specific gravity gas.

To determine the volumetric flow rate for gases other than natural gas, multiply or calculate the values in the capacity tables using the sizing equations with a correction factor.

The table below lists correction factors for some common gases:

Gas type	Specific gravity	Correction factor
Air	1.00	0.77
Butane	2.01	0.55
Carbon dioxide (dry)	1.52	0.63
Carbon monoxide (dr	y) 0.97	0.79
Natural gas	0.60	1.00
Nitrogen	0.97	0.79
Propane	1.53	0.63
Propane-Air mix	1.20	0.71

Specific gravity or relative density (air = 1, non-dimensional value)

Use the following formula to calculate the correction factor for gases not listed above. In the formula, d is the specific gravity of the gas.

Correction factor = $\sqrt{\frac{0.6}{d}}$

SAFETY SHUT-OFF VALVE

The RB 1700 Series regulators can be fitted with a safety shut-off valve for overpressure (OPSO) or combined under-and over-pressure (UPSO/OPSO) protection.

The SSV trip pressure can easily be adjusted independently of the regulator set point. The closing plug of the SSV controller is used as a pulling tool to relatch the valve.

A built-in bypass, for balancing pressure before relatching the safety shut-off valve, is operated by pulling the valve stem.

Accuracy class (AG)

» 0.3 - 5.7 bar AG 10

Minimum difference between regulator and SSV settings (ΔP_W):

» 15%, of set point

OUTLET PRESSURE RANGE

Regulator 3/4"

negulator 0,4								
	S	pring Ch	aracteris	tic	Spring	Range		
Spring Code	d (mm)	De (mm)	Lo (mm)	Lt	1720 - 1721 - 1722 (Ø165)	1730 - 1731 - 1732 (Ø90)		
20565141	3.5	35	80	8	0.12 - 0.40 bar	•		
20565142	4	35	80	8	0.21 - 0.65 bar	•		
20565143	4.5	35	80	8	0.34 - 0.92 bar	•		
20565144	5	35	80	8	0.55 - 1.32 bar	•		
20565127	3.5	35	50	6	•	0.50 - 0.85 bar		
20565128	4	35	50	6	•	0.80 - 1.30 bar		
20565129	4.5	35	50	6	•	1.20 - 2.30 bar		
20565130	4.5	35	60	6.5	•	2.00 - 3.30 bar		
20565131	5	35	60	6.5	•	2.00 - 4.80 bar		

Safety Shut-off Valve

Over Pressure Shut-off Springs (OPSO)

Over Fressure Shut-on Springs (OFSO)									
	S	pring Ch	aracteris	tic	Spring Range				
Spring Code	d (mm)	De (mm)	Lo (mm)	Lt	1721 - 1722 - 1731 - 1732 (Ø60)				
20563124	2.2	25	35	5.5	0.30 - 0.60 bar				
20563121	2.5	25	35	5	0.50 - 1.10 bar				
20563115	3	25	35	5.5	1.10 - 2.10 bar				
20563116	3.5	25	35	5.5	2.00 - 4.00 bar				
20563119	3.8	25	36.5	5.5	4.00 - 5.70 bar				
Under-Pressure Shut-off Springs (UPSO)									
20560516	1	10	30	5.5	0.10 - 0.22 bar				
20560517	1.2	10	30	5	0.22 - 0.45 bar				

FLOW CAPACITY

The following table gives the maximum flow capacity - in m³/h at standard conditions. More data are available in the leaflet "RB 1700 Capacity Tables".

Inlet			Inlet Pr	essure		
Pressure	RB 1720 150 mbar	RB 1720 300 mbar	RB 1720 500 mbar	RB 1720 0.8 bar	RB 1720 2 bar	RB 1720 4 bar
250 mbar	9	•	•	•	•	•
500 mbar	17	16	•	•	•	•
700 mbar	20	22	19	•	•	•
1 bar	26	30	30	10	•	•
1.5 bar	32	38	44	20	•	•
3 bar	50	60	70	36	34	•
5 bar	50	70	100	50	60	60
7 bar	50	70	140	70	80	100
≥ 10 bar	50	70	170	95	110	140

In order to limit the noise emission it is recommended not to exceed a gas velocity of 100 m/s at the regulator outlet.

FLOW CAPACITY

For a 0.6 specific gravity gas, the wide-open orifice flow (Q) may be calculated using the following equations:

» Sub-critical flow behaviour: $Q = K_G v \overline{P_d(P_u - P_d)}$

where $(P_u - P_d) \le 0.5 P_u$

» Critical flow behaviour:

 $Q = K_G P_u/2$

where $(P_u - P_d) > 0.5 P_u$

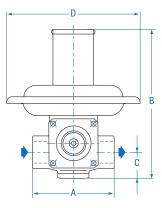
Wide-open Flow Coefficient KG

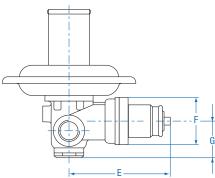
90 (without safety shut-off valve)

where:

Q = volumetric flow rate in m³/h at standard conditions

 P_u = absolute inlet pressure in bar


Pd = absolute outlet pressure in bar


Overall Dimensions

DN	Actuator	Α	В	С	D	Е	F	G	Wei	ght (kg)
DIA	Actuator	mm	mm	mm	mm	mm	mm	mm		with SSV
3/4"	Ø 165	100	185	32	165	130	60	46	3.0	4.0
3/4"	Ø 90	100	175	32	90	130	60	46	2.2	3.2

Vent and Sensing Lines

- » Regulator sensing line: internal
- » Regulator vent line: G 1/2" as option
- » SSV sensing line: internal
- » SSV vent line: Rp 1/8

RB 1700 DN 3/4" Gas

Type Designation

RBI 17	X	X	- DN	X	Options
	2				Medium pressure
	3				High pressure
		0			No safety device
		1			Over-pressure shut-off valve
		2			Over-and under-pressure shut-off valve
				3/4"	Body size

Information to be specified when ordering:

- » Regulator type code
- » Minimum and maximum inlet pressures
- » Outlet pressure range setting
- » Outlet pressure setting
- » Connection type
 - OPSO setting*
 - UPSO setting*

* (if requested)

Our company is the world's leading provider of smart metering, data collection and utility software systems, with over 8,000 utilities worldwide relying on our technology to optimize the delivery and use of energy and water.

To realize your smarter energy and water future, start here: www.itron.com

For more information, contact your local sales representative or agency:

ITRON GmbH

Hardeckstraße 2 D-76185 Karlsruhe Germany

Phone: +49 (0) 721 5981 0 **Fax:** +49 (0) 721 5981 189

While Itron strives to make the content of its marketing materials as timely and accurate as possible, Itron makes no claims, promises, or guarantees about the accuracy, completeness, or adequacy of, and expressly disclaims liability for errors and omissions in, such materials. No warranty of any kind, implied, expressed, or statutory, including but not limited to the warranties of non-infringement of third party rights, title, merchantability, and fitness for a particular purpose, is given with respect to the content of these marketing materials. © Copyright 2013, Itron. All rights reserved. GA-RB1700-¾-02-EN-11-13